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Abstract-Sensitivity of post-buckling paths is studied in the context of the general theory of elastic
stability of discrete structural systems. It is assumed that the sensitivity of the critical state itself has
been computed and a formulation is developed to account for sensitivity of the curvature of the
post-critical states when there are changes in design parameters. A linear fundamental path is
considered. Explicit expressions are obtained for the sensitivities and they take the form of per
turbation expansions. Only first order sensitivity of post-critical paths has been developed. A simple
example ofan angle section column with deformable cross-section illustrates that although a critical
state may be insensitive to changes in certain design parameters, the post-critical response may be
highly sensitive. In the first example presented (an axially loaded angle section column), the post
buckling response even changes from stable to unstable depending on the values of the design
parameter considered. Copyright © 1996 Elsevier Science Ltd.

I. INTRODUCTION

This paper presents, for the first time, a theory to account for changes in the post-buckling
path when design parameters are modified. This is a new field in the theory of elastic
stability: the design sensitivity of post~criticalstates. No previous analytical work is avail~

able in this area.
In sensitivity analysis, variations or derivatives ofstate fields are found due to variations

in the design parameters. An excellent account of the work in this area is given in the book
by Haug et al. (1985), with application to static, buckling and dynamic analysis. Sensitivity
analysis is important in design improvements and optimization; in stochastic analysis
[Kleiber and Hien (1992); Godoy (1995)] and it is also information of actual relevance in
itself.

Sensitivity in buckling problems is a difficult topic, since it involves a problem that is
non-linear. The critical loads are usually computed from an eigenvalue problem and there
is by now an important amount of information in this field, notably the work of Mroz
(1992). The adjoint method was presented by Dems and Mroz (1983), and later extended
to sensitivity with respect to changes in shape and boundary conditions of the system [Mroz
(1992)] and thermo-elastic problems [Dems (1987)]. Second order sensitivity using direct
and adjoint approaches may be found in Godoy et al. (1994), and Godoy and Raichman
(1995).

Buckling loads, as computed from a bifurcation analysis, provide only limited infor
mation on the mechanics of the problem, especially in shell and shell-like structures. In
such cases, there is a need to obtain not just critical states but also post-critical states (i.e.,
post-critical equilibrium paths emerging from the critical state). Sensitivity of post-critical
states to imperfections (specifically geometric or load imperfections) has been the subject
of research for some time and is part of the general theory ofelastic stability [see Thompson
and Hunt (1973), Flores and Godoy (1992) and Godoy and Mook (1995)]. Sensitivity of
post-buckling states to changes in design parameters, on the other hand, has only been
explored by numerical experimentation [Fitch and Budianski (1970), Flores and Godoy
(1991); and many others]. But there seems to be a complete lack of analytical studies
oriented to obtain explicit forms for design sensitivity in post-buckling analysis.
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Fig. 1. Examples of primary and secondary paths for a reference system and for a system with

changes in a design parameter.

To further clarify the problem studied, let us consider the response shown in Fig. 1.
Equilibrium states are plotted in a load-displacement plane, assuming some displacement
component Qi and a single load parameter A. Solid lines represent stable equilibrium states,
while dotted lines are associated to unstable states. The fundamental or primary path of
equilibrium states arises from the origin and may in general be non-linear (in this paper,
however, the presentation is restricted to linear fundamental paths). A critical state is also
plotted and assumed to occur at Nand Qf. A non-linear path (known as secondary or
post-critical path) emerges from that state. In Fig. 1, such a secondary path is plotted as a
stable path, in the sense that there are equilibrium states at values higher than the critical
load. All the above may be computed for a specific value of a design parameter T, e.g. T = O.
But for T -:f. 0 several changes may occur in the response: first, the primary path may
change; second, the critical state may change; and finally, the post-critical path may be
modified in values and also in nature (changing from stable to unstable).

This paper deals with a formulation for design sensitivity of post-critical equilibrium
states. The framework of analysis is the so-called general theory of elastic stability, for
discrete structural systems [Thompson and Hunt (1973)]. Use is made of perturbation
analysis to find the critical and post-critical states for a reference configuration, and a
summary of the relevant equations is presented in Section 2. Sensitivity of a critical state is
the subject of Section 3, leading to explicit expressions for a linear fundamental path.
Sensitivity of post-critical states is considered in Sections 4 and 5, for symmetric and
asymmetric bifurcations, respectively. Finally, a simple example is presented in Section 6
to illustrate the procedure in a three degree-of-freedom problem.

2. SUMMARY OF POST-CRITICAL ANALYSIS

There are several formulations based on the total potential energy of the system,
available for the analysis of post-critical behavior, notably the V-formulation, in which
the original set of coordinates is used for both pre- and post-buckling analysis; the W
formUlation, in which the energy is computed using sliding generalized coordinates mea
sured from the fundamental path; and the D-formulation, in which the second variation is
set to a diagonal form for each load level. We follow the first approach in this work, as
originally presented in Flores and Godoy (1992).

The total potential energy V is written in terms of the generalized coordinates Qi and
the load parameter A, i.e. V = v[Qj' A]. The equilibrium condition is equivalent to the
condition that the total potential energy is at a stationary state, leading to

Vi[Q" A] = 0, (1)

where subscripts of V indicate derivation with respect to Qi' Solution of eqn (1) leads to
the fundamental or primary equilibrium path Qf = Q,(AF

).
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A critical state associated to a distinct (not compound) critical mode is characterized
by

(2)

where xj is the eigenvector, N is the eigenvalue and Vlj = Vij[Qj, N]. Thus, a critical state
is characterized by the load and displacement at which it occurs (namely Nand QD and
the direction of instability xj.

The nature of the critical state is a bifurcation if

(3)

A non-zero value in eqn (3) leads to a limit point. A symmetric bifurcation satisfies

(4)

and asymmetric bifurcations are associated to C i= O.
The post-critical states are written in terms of a suitable perturbation parameter that

will be denoted s. This parameter is usually taken as one of the components of the
displacement vector, that has a non-zero value in the post-critical path. The post critical
displacements and load become

with

Qi(S) = Q~+qi(S)

A(s) = N +A(S), (5)

(6)

The notation ( )(n)c indicates the n-derivative with respect to the perturbation parameter s,
evaluated at the critical state. To obtain the derivatives in eqn (6), use is made of the
perturbation equations of equilibrium. Following Flores and Godoy (1992), the results
from the perturbation analysis are as follows.

For symmetric bifurcation, the procedure to compute the unknown coefficients in eqn
(6) may be stated as

A(l)c = 0

solve VijY) = - V;

V4calculate A(2)c = -
3B

(7)

(8)

(9)

(10)

(11)

(12)

(13)
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For asymmetric bifurcation, the algorithm becomes

calculate,1,C]lc = _ _B_-_J--'----B_
2

_-_A_C_
A

(14)

(15)

(16)

(17)

(18)

The above procedures are similar to those obtained using the W-formulation and
presented, e.g. in Thompson and Hunt (1973).

3. SENSITIVITY OF CRITICAL STATE

We shall see that sensitivity of the post-critical path depends on sensitivity of the
critical (and also pre-critical) state. Thus, we review here some basics offirst order sensitivity
analysis of critical states, based on the work of Godoy et al. (1994).

Consider a design parameter 't, and we are interested in the sensitivity of the buckling
problem when changes are introduced in 't. Let ,1,c, Qj and xJ be the variables defining the
critical state, but for a given value of the design parameter r, usually r = O. Ifthe evaluated
derivatives with respect to r are denoted by

(--,--) = dO I
dr r~O

and

then one may write the variables at the critical state as a Taylor expansion about a state
with r = 0 in the form

(19)

(20)

(21)

To review the analysis, we shall restrict our attention to a case in which the fundamental
path is linear. The energy V is a function of Qi and A, as stated at the beginning of Section
2. An explicit form of V contains such variables multiplied by coefficients. Following the
notation of Croll and Walker (1972), we write

where A o, Ai, Aij, Aijk and A ijkl are coefficients. This explicit dependence of V with the control
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and response variables will make clear the dependence of all coefficients involved, on the
design parameter r.

The fundamental path is given by the equilibrium condition

(23)

and the critical state by

(24)

withx~=I.

The algorithm for the computation of the sensitivity parameters in eqns (20)-(22) is
as follows:

(I) Solve Ai/{t = - (Ai/QJ +AJ
[notice that there is no constraint on Qj since Ai/ is not a critical state].

• • F
(2) Compute v; = (Ai/+AAijkQk)Xj.
(3) Calculate A= -(ACAijkXjQk+V;)X~.

(4) Compute g; = v;+),(Ai/kQf)Xj+ (AcAijkXj)Qk'
(5) Solve (Aij+),CAijkQf)h; = -9;.
(6) Since Xl = (;(LX~ +h/[ therefore (;(1 = 1.
(7) Compute Xi = x~ +h;.

Second (and higher) order coefficients can be computed in this way; this procedure is
fully explained in Godoy et al. (1994). What has been reviewed here is a direct method of
analysis; another possibility would be the adjoint method [see for example, Dems and
Mroz (1983)].

In this section, normalization of the eigenvector is carried out by setting one of the
components of the eigenvector equal to one, i.e. x~ = 1. However, other possibilities of
normalization exist and one of them (frequently employed in structural dynamics) is to set
(AijkQf)XjX~ = I. We shall not pursue such analysis here because the main interest in this
work is on the post-buckling response, rather than any dynamic feature of the structure.

4. SENSITIVITY OF POST-CRITICAL STATES: SYMMETRIC BIFURCATION

Let )Y)c be the curvature of the post-buckling path, calculated from a stability analysis,
for a reference value of the design parameter r, i.e. r = O. In the post-critical analysis, the
sensitivity of the post buckling state may be written in terms of the design parameter r as:

)Y)(r) = A(2)C+A(2)r+V(2)r2+ .

qy)(r) = qy)c+qY)r+~qY)r2+ ,

where, again, dots on top of a variable indicate derivation with respect to r. Notice that
qP) = Xi and xj was already computed. To obtain the coefficients in the previous equation,
let us write eqn (13) in the form

(25)

First order perturbation of this equation requires

(26)

To solve A(2) it is necessary to obtain Band 174 , and this will be done in the following.
Consider from eqns (II) and (22)
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- FV4 = Aijk/XiXjXkX/ +3(A jjk +Aijk/Q / )XjXjZk

B = (Aijk+Ajjk/Qi)XjXjYk.

The first order perturbation equations of 174 , called 174 , is

where

(28)

The first order perturbation equation of B is

(29)

We now need the derivatives Zk and Yk. They are obtained from derivation of eqns (9)
and (10) as follows:

(30)

where

(31)

and

(32)

At this stage, we need to set some values of ZI and YI to be consistent with our earlier
normalization of eigenvectors. Since we have already adopted Yl = 0 and Zl = 0, then it
follows that Zj = 0 and YI = O.

An algorithm for computation of ,.j(2) for symmetric bifurcation is as follows.

(1) Compute

(2) Solve Yi using YI = 0 and

(3) Solve Zj using Zl = 0 and

(4) Compute

(5) Compute



(6) Evaluate

Sensitivity of post-critical states

• (2)c '"
'(2) _ 3R). - V4

A - - 3B
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It may also be required to compute the sensitivity of post-critical displacements. To
do that, let us obtain the derivatives of eqn (14)

and now 4Fl can be obtained by solving the system

(33)

A similar scheme of analysis can be followed to compute the second order sensitivities
of the post-buckling curvature ~(2)c.

5. SENSITIVITY OF POST·CRITICAL STATES: ASYMMETRIC BIFURCATION

The coefficients of the perturbation expansion in this case arise from eqn (17), i.e.
A).(llc = - B+ [B2- AC]l!2. First order perturbation of this equation leads to

(34)

The derivative B was obtained previously in eqn (29). We need to calculate A and C
from the derivatives of eqns (16) and (4), now in the form

(35)

(36)

where aijk = (A ijk +AUk,Qi). The first order derivatives are

(37)

(38)

The computation of ij is as in symmetric bifurcation [see eqn (30)]. From eqn (34) one
may obtain

_B+,.l [B 2-AC]-I!2(2BB-AC-AC) _A)Ylc
}.(I) = ~~-=--~~~~~A~~~~~~~- (39)

An algorithm for the computation of ~ (1) in asymmetric bifurcation could proceed as
follows:

and
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(3) Compute

(4) Evaluate

Notice that

L. A. Godoy

-B+HB2-AC]-1/2(2BB-AC-AC) _A;.(')c),(1) = _

A

• Only first order sensitivity of the critical state is required to solve first order sensitivity
of the post-critical state.

• We have to solve two systems of linear equations for y and z, and the rest are "just"
products.

6. EXAMPLE OF SENSITIVITY OF POST-BUCKLING PATH

6.1. Angle section column with deformable cross-section
An academic, but interesting, example of sensitivity is the post-buckling response of

an axially loaded, simply supported column with deformable cross-section. The cross
section considered is shown in Fig. 2; this is a model of an angle section column in which
the two plates are connected by a hinge and a moment spring, of stiffness K. This example
is considered in Eterovic et al. (1990), and more recently, in Lopez-Anido and Godoy
(1995).

The axial (u) and transverse (w) displacements, and the rotation at the hinge (8), are
represented by

7r/2

,,
,,

\ ,
\

\

Fig. 2. Geometry of the cross-section of an axially loaded column.
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x
u(x) = QI

L

w(x) = Q2 sin (~)

. (nx)e(x) = Q3 sm L '
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(40)

where Qb Q2 and Q3 are the amplitudes of the assumed shape of u, wand e. We use non
linear kinematic relations for column and linear constitutive equations, with a moment of
inertia defined as

(41)

where /0 is the moment of inertia of the undeformed section. It is assumed that the moment
of inertia about the weak axis decreases with deformations of the cross section, e.

The coefficients for the column under axial load, with a deformable cross section, are
[Lopez-Anido and Godoy (1995)]

(42)

where

P /0 K
A=-' d=--' f-- EA o ' - A

o
L 2 ' = EA o .

The following results are obtained by use of the theory ofelastic stability on the present
model of the column, and yields the fundamental path, critical state and post-critical path.

The fundamental path is given by

The critical state is given by
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The load was initially assumed as tensile in writing V; for that reason, the critical load
is negative. The perturbation parameter adopted to follow the post-critical path is the
component Q2' The vectors required for the post-buckling path are

2

z= 0

8 3 d-n 
3 f

The stability coefficient and Bare

V4 = ~n4L~

~ = I _ 159n 2 d
2

9 f

Finally, the second derivative of the load is

Notice that a positive value of ~ indicates a curvature with the same sign as the critical
load, thus a rising path.

6.1.1. Sensitivity analysis. Let us consider the design parameter K, the stiffness of the
moment spring, and write it in the parametric form

K = Ko(l +r).

For convenience in the calculations, we shall assume a reference value Ko such that ~ = O.
This means that
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K - 256 2d2EAo - 911: o·
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In the first stage, we make use of the sensitivity analysis of critical states outlined in Section
3. To obtain that, the derivatives of the energy coefficients with respect to r are required;
but since only A 33 is a function ofj(and thus of K and r), the only non-zero derivative is

It is simple to show that the fundamental path and critical state are not sensitive to
changes in r. Thus

Next, we want sensitivity of A(2), for a problem of symmetric bifurcation. Since
Ai = °= Aijk and A= °= Qb then Yij = Aij and the only non-zero term becomes Y33 = A 33 .
Furthermore, 1]ik = 0, leads to h =°and t/J33Y3 = 0.

To calculate the sensitivity of z we notice that

The following system of equations should be solved, in which i 2 = °(because the
perturbation parameter adopted in this example is Q2) :

[

L °
° °
° °

The solution of this system is

1
°]8 3 EA o

i= --71: --d °3 K .
I

The sensitivity of B reduces to:

Finally, the sensitivity V4 may be calculated in the form:

V4 = 3(Aijk +Aijk/Q/)xixA

= 3(A 223 )X2 X 2Z3

With the above results, it is possible to proceed with sensitivity of A(2)c:
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A,(2)

1

Fig. 3. Sensitivity of the curvature of the post-buckling path for an angle section column.

;(2) = _ 174 = _~ 4d2 EA o
/c 3B 9 n Ko '

The final result for sensitivity of the curvature of the post-buckling path is

The results are presented in Fig. 3 and it is seen there that first order sensitivity of the
curvature of the post-buckling path changes sign with the value of r. The system is an
unstable symmetric bifurcation with negative values of, ; while for positive values of, the
system is a stable symmetric bifurcation.

For this simple example, the values of sensitivity could have been obtained from the
explicit expressions; however, in more complex problems involving, e.g. finite element
discretizations, there are no analytical solutions available and the present analysis would
provide new information on sensitivity.

6.2. Circular plate under in-plane loading
The buckling of circular plates has been considered by several authors; the sensitivity

of the critical state has been solved by Godoy et al. (1994) and will be further studied here
to extend the analysis to sensitivity of post-critical behavior. This case is more complex
than the previous one, in the sense that all pre-critical, critical and post-critical states are
sensitive to changes in the design parameter (the thickness of the plate).

The axial (u) and transverse (w) displacements are represented by

w = Q cos (nr)
I 2R ' (43)

where QI and Q2 are the amplitudes of the assumed shapes. The energy coefficients in this
case result in
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A; = -2R

An = 2c(l + v)

c C
A 112 = 1.7337(l+v)-RAIIII = 10.55

R2

where

2189

(44)

Eh
C=--'

1-v2 '

The fundamental path is given by

Eh3

D=----
12(l-v2

)

The critical state can be computed as

QC = l-~l
A I12

XC = {~}-

The vectors required for the post-buckling path are:

y = 1- °A; )
An

z = 1- :112]'
An

The coefficients of the quadratic equation are

C=O; B=1.7337.

The stability coefficient is in this case

and the curvature of the post-buckling path becomes
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6.2.1. Sensitivity analysis. Let us consider the thickness h as a design parameter and
write it in the form

h = ho(l +r).

The derivatives of the energy coefficients become

(45)

Sensitivity of the fundamental path is given by

and sensitivity of the critical state results in

A= 3Nxj = O.

Next, we calculate sensitivity of the post-critical path. The matrices y and '1 have
coefficients equal to zero, except for

This leads to

y = 1- y~2Y2]
An

and

The sensitivity ofB becomes zero. The derivative of the stability coefficient with respect
to r becomes
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Fig. 4. Sensitivity of the curvature of the post-buckling path for a circular plate.

Finally, we can get

The result for sensitivity of the post-buckling curvature is

and is plotted in Fig. 4.
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7. CONCLUSIONS

A consistent derivation of first order sensitivity of the post-buckling path in symmetric
as well as asymmetric bifurcation has been presented. The limitations of this work refer to
a single design parameter and first order sensitivity. Certainly, both limitations could be
overcome, but the author believes that this may be a good start to appreciate the difficulties
and achievements in this field.

Once the information of design sensitivity of the critical state is obtained, following
the present analysis it is possible to compute sensitivities of the curvature of the post
buckling path (in symmetric bifurcation) and sensitivity of the tangent to the post-buckling
path (in asymmetric bifurcation). Algorithms for the computation of sensitivities are pre
sented in both cases.

A three degrees-of-freedom problem has been first studied to illustrate the algorithms
of computation. The problem is an axially loaded column in which the angle cross-section
is assumed to rotate about a hinge that articulates both plates. The design parameter studied
is the stiffness of a moment spring at the hinge. The results show that the critical state itself
is not sensitive to the parameter considered; however, the post-buckling path is highly
dependent on the stiffness coefficient adopted. Sensitivity is also reflected in that the post
buckling behavior may change from stable to unstable depending on the values of the
design parameter.

In the second example, the circular plate under in-plane loading, we notice that the
fundamental path and critical state are sensitive to changes in the design parameter chosen,
and that the post-buckling path is also sensitive to thickness changes. However, in this case
there cannot be a change from stable to unstable behavior produced by changes in the
design parameter.

This is a new field in the context of design sensitivity analysis and it is expected that it
will be further developed in the next few years. The present formulation would have more
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practical relevance if it was implemented in the context of a finite element package and this
is seen as an important topic for further research.
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